Lee, C. K. & Birch, G. G. (1975). J. Food Sci. 40, 784-787.

Lee, C. K. & Koh, L. L. (1993). Carbohydr. Res. In the press.

- Lindberg, B., Lindberg, B. & Svensson, S. (1973). Acta Chem. Scand. 27, 373-374.
- Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. (1963). In Aspects of Protein Structure, edited by G. N. Ramachandran. New York: Academic Press.
- Shallenberger, R. S. & Acree, T. E. (1967). Nature (London), 216, 480-482.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Release 4.0 for Siemens R3m/V crystallographic system. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Taga, T., Senma, M. & Osaki, K. (1972). Acta Cryst. B28, 3258-3263.

Acta Cryst. (1994). C50, 601-603

3,8α-Dihydroxyestra-1,3,5(10),6-tetraen-17-one

Edmund W. Czerwinski*

Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, Texas 77555-0653, USA

ZHISONG CAO AND JOACHIM LIEHR

Department of Pharmacology, The University of Texas Medical Branch, Galveston, Texas 77555-0653, USA

(Received 27 April 1993; accepted 5 July 1993)

Abstract

The molecular parameters of the title compound, $C_{18}H_{20}O_3$, are all within normal limits. The *A/B* ring junction is planar and the *C/D* junction is *trans*, as expected. However, the *B/C* junction is *cis* with an interplanar angle of 65.1 (2)°. There are only two intermolecular contacts involving the 8*α*-hydroxyl of one molecule and the 3-hydroxyl and 17-keto O atoms on two symmetry related molecules.

Comment

The title compound (I) was synthesized as described by Cao & Liehr (1993). The crystal structure study was undertaken to ascertain the conformation of the

compound and to determine on which face of the steroid skeleton the 8-hydroxyl group was located. Fig. 1 shows the structure of the molecule in the asymmetric unit with the thermal vibration ellipsoids of the non-H atoms. Bond lengths, bond angles and torsion angles of the non-H atoms are given in Table 2 and are within the range of expected values (Duax & Norton, 1975; Griffin, Duax & Weeks, 1984). The packing of the molecules is shown in Fig. 2. All intermolecular distances correspond to normal van der Waals interactions. The only intermolecular contacts involve O8 with $O3(-x, y-\frac{1}{2}, \frac{1}{2}-z)$ [2.715 (5) Å] and $O17(\frac{1}{2}-x, 2-y, z-\frac{1}{2})$ [2.804 (5) Å] resulting in an O3…O8…O17 angle of 92.3 (2)°. Steroid ring A (C1, C2, C3, C4, C5, C10) possesses bond parameters consistent with a benzene ring and is planar to within experimental error. The O3 hydroxyl group is coplanar with ring A. The asymmetry parameters defined by Duax & Norton (1975) for ring A range from 0.6 to 2.8° with $\langle \tau \rangle =$ 1.2°. Ring B (C5, C6, C7, C8, C9, C10) adopts a distorted sofa conformation largely due to the unsaturated C5-C10 and C6-C7 bonds. C9 is nearly coplanar with the plane formed by the atoms of ring A and O3. C7 and C8 deviate from this plane towards the α face of the molecule. The asymmetry parameters are $\Delta C_2^{5,6} = 7.2^\circ$, $\Delta C_s^6 = 14.9^\circ$ and $\Delta C_s^7 =$ 39.9°, with $\langle \tau \rangle = 22.8^{\circ}$. These data indicate that ring B is distorted from the C9 α ,C10 β -half-chair conformation ($\Delta C_2 = 0^\circ$) towards a C8 α -sofa conformation. Ring C (C8, C9, C11, C12, C13, C14) does not have any unusual substituents and assumes the commonly found chair conformation ($\Delta C_2^{9,11} = 2.5^\circ$, $\Delta C_{\rm s}^{11} = 3.0^{\circ}, \langle \tau \rangle = 55.4^{\circ}).$

Fig. 1. Two orthogonal views of the molecular structure of the estratetraene in the asymmetric unit showing the numbering scheme and the thermal vibration ellipsoids of the non-H atoms. The thickest lines denote the double bonds.

Acta Crystallographica Section C ISSN 0108-2701 ©1994

$C_{18}H_{20}O_3$

Fig. 2. Stereoview along the *a* axis showing the molecular packing. Thin lines depict the hydrogen bonds between O8 and O3(-x), $y = \frac{1}{2}, \frac{1}{2} = z$ and O17 $(\frac{1}{2} = x, 2 = y, z = \frac{1}{2})$.

The *D*-ring (C13, C14, C15, C16, C17) pseudorotation parameters, $\Delta = -23.6^{\circ}$ and $\varphi_m = 44.0^{\circ}$, are near those of a 14α -envelope conformation ($\Delta =$ -36.0° , $\varphi_m = 46.7^{\circ}$) (Altona, Geise & Romers, 1968). This is consistent with the finding by Duax, Weeks & Rohrer (1976) that the other steroid Drings that have an sp^2 -hybrid C17 atom have a 14α -envelope conformation.

The A/B ring junction is planar and the C/Djunction is trans (Fig. 1, Table 2). However, the B/Cjunction is cis. The angle between the least-squares mean plane of rings B and C is $65.1 (2)^{\circ}$.

The overall conformation of rings A, B and C of C6 the title compound is very nearly identical with the conformation of estra-1,3,5(10),6-tetraene-3methoxy- 8α -methyl- 17β -bromoacetoxy (Weber & Galantay, 1972). The O8 hydroxyl group of the title compound is orientated on the α face of the molecule, as is the respective 8α -methyl group of the C13 C14 related estratetraene compound. The D-ring confor-C15 mation is as found in a 9(11)-estratetraene com-C16 pound which has a keto O atom on C17 (Pitt, Rector, White, Wani, McPhail & Onan, 1977).

Experimental

L .	
Crystal data	
Crystal data $C_{18}H_{20}O_3$ $M_r = 284.4$ Orthorhombic $P2_12_12_1$ a = 6.192 (1) Å b = 13.990 (1) Å c = 16.883 (2) Å V = 1462.6 (5) Å ³ Z = 4	Cu K α radiation $\lambda = 1.5418$ Å Cell parameters from 24 reflections $\theta = 10-35^{\circ}$ $\mu = 0.658$ mm ⁻¹ T = 292 K Irregular $0.5 \times 0.4 \times 0.3$ mm
$D_x = 1.291 \text{ Mg m}^{-3}$	Colorless Crystal source: diethyl ether

Data collection

Enraf-Nonius CAD-4	1
diffractometer	
$\omega/2\theta$ scans	θ
Absorption correction:	h
refined from ΔF (DI-	k
FABS; Walker & Stuart,	l
1983)	3
$T_{\rm min} = 0.81, \ T_{\rm max} = 1.51$	
1627 measured reflections	
1627 independent reflections	

Refinement

Cl

C2

C3 03

C4

C5

C7

C8

08

C9 C10

C11

C12

C17 017

C18 HO3 HO8

- Refinement on FR = 0.067wR = 0.066S = 1.0061607 reflections 267 parameters All H-atom parameters refined
- 607 observed reflections $[I > 3\sigma(I)]$ $max = 70^{\circ}$ $-7 \rightarrow 0$ $= -17 \rightarrow 0$ $= -20 \rightarrow 0$ standard reflections frequency: 60 min intensity variation: none

Unit weights applied
$(\Delta/\sigma)_{\rm max} = 0.03$
$\Delta \rho_{\rm max} = 0.25$ (1) e Å ⁻³
$\Delta \rho_{\rm min} = -0.33$ (1) e Å ⁻³
Atomic scattering factors
from International Tables
for X-ray Crystallography
(1974, Vol. IV)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

 $B_{eq} = (8\pi^2/3)\sum_i \sum_j U_{ij}a_i^*a_i^*a_i.a_j$ for non-H atoms; B_{iso} for H. Coordinates of HO3 were restrained in the last cycles of refinement.

x	у	z	$B_{\rm iso}/B_{\rm eq}$
0.0831 (9)	1.2421 (3)	0.3230 (3)	3.17 (9)
-0.0297 (9)	1.2862 (3)	0.2621 (3)	3.4 (1)
-0.2295 (9)	1.2498 (3)	0.2398 (3)	3.5 (1)
-0.3548 (7)	1.2889 (3)	0.1799 (2)	4.85 (8)
-0.3130 (9)	1.1682 (3)	0.2764 (3)	3.22 (9)
-0.1948 (8)	1.1238 (3)	0.3360 (3)	2.88 (9)
-0.2713 (8)	1.0328 (3)	0.3694 (3)	3.33 (9)
-0.1430 (8)	0.9774 (3)	0.4131 (3)	3.16 (9)
0.0898 (8)	1.0046 (3)	0.4277 (2)	2.51 (8)
0.2149 (6)	0.9658 (2)	0.3617 (2)	3.07 (6)
0.1200 (8)	1.1147 (3)	0.4288 (3)	2.87 (9)
0.0052 (8)	1.1606 (3)	0.3601 (3)	2.78 (8)
0.0427 (9)	1.1594 (3)	0.5076 (3)	3.6 (1)
0.147 (1)	1.1141 (4)	0.5810 (3)	4.01 (1)
0.1076 (9)	1.0056 (3)	0.5799 (3)	3.21 (9)
0.1929 (8)	0.9635 (3)	0.5018 (2)	2.80 (8)
0.200 (1)	0.8547 (3)	0.5165 (3)	3.8 (1)
0.287 (1)	0.8494 (4)	0.6024 (3)	4.2 (1)
0.237 (1)	0.9469 (4)	0.6386 (3)	3.9 (1)
0.2948 (9)	0.9726 (3)	0.7037 (2)	5.7 (1)
-0.132 (1)	0.9835 (4)	0.5996 (3)	4.4 (1)
-0.293	1.346	0.168	7 (2)
0.183 (8)	0.992 (3)	0.319 (3)	1 (1)

Table 2. Selected geometric parameters (Å, °)

C1C2	1.388 (7)	C8-C14	1.518 (6)
C1-C10	1.387 (7)	C9—C10	1.505 (7)
C2—C3	1.389 (8)	C9—C11	1.545 (7)
C3O3	1.387 (6)	C11-C12	1.535 (8)
C3—C4	1.398 (7)	C12—C13	1.538 (7)
C4—C5	1.391 (7)	C13-C14	1.538 (7)
C5—C6	1.470 (6)	C13—C17	1.517 (7)
C5C10	1.402 (7)	C13—C18	1.553 (9)
C6C7	1.333 (7)	C14—C15	1.542 (7)
C7—C8	1.511 (7)	C15—C16	1.548 (7)
C8—O8	1.461 (6)	C16—C17	1.527 (8)
C8C9	1.552 (6)	C17—O17	1.210 (6)
C2-C1-C10	121.7 (5)	C1-C10-C5	118.6 (5)
C1-C2-C3	119.1 (5)	C1-C10-C9	122.3 (5)
C2-C3-O3	123.5 (5)	C5-C10-C9	118.9 (4)

C2-C3-C4	120.6 (5)	C9-C11-C12	113.4 (4)
O3-C3-C4	115.9 (5)	C11-C12-C13	109.3 (5)
C3-C4-C5	119.4 (5)	C12-C13-C14	109.5 (4)
C4-C5-C6	119.7 (5)	C12-C13-C17	116.2 (5)
C4-C5-C10	120.7 (4)	C12-C13-C18	110.2 (5)
C6-C5-C10	119.5 (4)	C14-C13-C17	99.8 (4)
C5-C6-C7	121.6 (5)	C14-C13-C18	115.8 (5)
C6-C7-C8	120.8 (5)	C17-C13-C18	105.1 (5)
C7-C8-08	106.7 (4)	C8-C14-C13	114.7 (4)
C7-C8-C9	111.5 (4)	C8 - C14 - C15	121 2 (4)
C7-C8-C14	116.1 (4)	$C_{13} - C_{14} - C_{15}$	104.5 (4)
08-C8-C9	108.4 (4)	C14-C15-C16	102 0 (4)
08-C8-C14	105 4 (4)	C15 - C16 - C17	105.2 (5)
C9-C8-C14	108 3 (4)	C13 - C17 - C16	109.2(3)
C8 - C9 - C10	1109(4)	C13 - C17 - 017	126.0 (6)
C8-C9-C11	112 1 (4)	C16-C17-017	120.0 (0)
C10-C9-C11	110.1 (4)		124.0 (0)
C10-C1-C2-C3	2.5 (7)	C9-C8-C14-C13	56.1 (5)
C2-C1-C10-C5	-1.4(7)	C9-C8-C14-C15	-177.0 (4)
C2-C1-C10-C9	-176.9(4)	C8-C9-C10-C1	-146.8(4)
C1-C2-C3-O3	179.8 (4)	C8-C9-C10-C5	37.6 (6)
C1-C2-C3-C4	-2.0(7)	C11-C9-C10-C1	88.5 (6)
C2-C3-C4-C5	0.4 (7)	C11-C9-C10-C5	-87.1(5)
O3-C3-C4-C5	178.8 (4)	C8-C9-C11-C12	54.2 (6)
C3-C4-C5-C6	-174.0(4)	C10-C9-C11-C12	178.1 (4)
C3-C4-C5-C10	0.7(7)	C9-C11-C12-C13	-55.3 (6)
C4-C5-C6-C7	164.9 (5)	C11-C12-C13-C14	55.7 (6)
C10-C5-C6-C7	-9.9(7)	C11-C12-C13-C17	167.9 (4)
C4-C5-C10-C1	-0.3(7)	C11-C12-C13-C18	-72.8(5)
C4-C5-C10-C9	175.5 (4)	C12-C13-C14-C8	-59.3(5)
C6-C5-C10-C1	174.5 (4)	C12-C13-C14-C15	165.6 (4)
C6-C5-C10-C9	-9.7(6)	$C_{17} - C_{13} - C_{14} - C_{8}$	178 2 (4)
C5-C6-C7-C8	-2.1(7)	C17-C13-C14-C15	43.1 (5)
C6-C7-C8-08	-87.4(5)	C18-C13-C14-C8	66.0 (5)
C6-C7-C8-C9	30.8 (6)	C18-C13-C14-C15	-69.1 (5)
C6-C7-C8-C14	155.5 (4)	C12-C13-C17-C16	-147.0(5)
C7-C8-C9-C10	-46.4(5)	C12-C13-C17-O17	32.6 (8)
C7-C8-C9-C11	77.2 (5)	C14-C13-C17-C16	-29.4(5)
08-C8-C9-C10	70.8 (5)	C14-C13-C17-O17	150.2 (6)
08-C8-C9-C11	-165.6(4)	C18 - C13 - C17 - C16	90.9 (5)
C14-C8-C9-C10	-175.3(4)	C18-C13-C17-O17	-89.5(7)
C14-C8-C9-C11	-51.8(5)	C8-C14-C15-C16	-172.1(4)
C7-C8-C14-C13	70.3 (5)	C13-C14-C15-C16	-40.7 (5)
C7-C8-C14-C15	56.6 (6)	C14-C15-C16-C17	21.5 (6)
08-C8-C14-C13	171.9 (4)	C15-C16-C17-C13	5.1 (6)
08 - C8 - C14 - C15	-61.2 (5)	$C_{15} - C_{16} - C_{17} - O_{17}$	-174 5 (6)

The crystal structure was solved by the direct-methods program *SHELXS86* (Sheldrick, 1985). All H atoms were located from difference Fourier maps and refined isotropically. A secondary extinction correction, $g = 1.0 \times 10^{-6}$ (Stout & Jensen, 1991), was included but not refined in the least-squares refinement process. There were no significant features in the final difference Fourier map. All refinement calculations were performed on a DEC VAXstation 3100 Model 76 computer using the Enraf-Nonius *SDP-Plus* package (Frenz, 1985).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, complete geometry and least-squares-planes data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71462 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH1077]

References

Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 34, 13-32.

Cao, Z. & Liehr, J. (1993). In preparation.

Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structure, Vol. 1, edited by W. L. Duax & D. A. Norton. New York: Plenum.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271-383. New York: John Wiley.
- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Griffin, J. F., Duax, W. L. & Weeks, C. M. (1984). In Atlas of Steroid Structure, Vol. 2, edited by J. F. Griffin, W. L. Duax & C. M. Weeks. New York: Plenum.
- Pitt, C. G., Rector, D. H., White, D. H., Wani, M. C., McPhail, A. T. & Onan, K. D. (1977). J. Chem. Soc. Perkin Trans. pp. 1144-1150.
- Sheldrick, G. M. (1985). Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175-189. Oxford Univ. Press.
- Stout, G. H. & Jensen, L. H. (1991). In X-ray Structure Determination, 2nd edition. New York: Macmillan.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Weber, H. P. & Galantay, E. (1972). Helv. Chim. Acta, 55, 544-553.

Acta Cryst. (1994). C50, 603-606

5- and 7-Dicyanomethylene-1,2-ethylenedithiocycloheptatrienes

Kanji Kubo

Graduate School of Engineering Sciences, 39, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816, Japan

AKIRA MORI AND HITOSHI TAKESHITA*

Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816, Japan

HIROHISA TSUZUKI

The Center of Advanced Instrumental Analysis, 17, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816, Japan

(Received 24 December 1992; accepted 13 September 1993)

Abstract

The exocyclic double-bond lengths in 2,3-ethylenedithio-2,4,6-cycloheptatrien-1-ylidenemalononitrile, (1), $C_{12}H_8N_2S_2$, and 4,5-ethylenedithio-2,4,6-cycloheptatrien-1-ylidenemalononitrile, (2), $C_{12}H_8N_2S_2$, are 1.389 (3) and 1.392 (5) Å, respectively. The planarity of (2) is fairly good, whereas the shape of the seven-membered ring of (1) is puckered.